On the Statistical Properties of Indoor Power Line Channels: Measurements and Models

José Antonio Cortés, Francisco Javier Cañete, Luis Díez, and José Luis González Moreno
Departmento de Ingeniería de Comunicaciones, E.T.S.I. de Telecomunicación, University of Málaga, Spain

Abstract—In the last years, numerous works have analyzed the statistical distribution of indoor power line channels response. A set of models based on two main approaches, bottom-up and top-down, have been proposed. This work analyzes the statistical distribution of the attenuation and the delay spread of indoor power line channels. First, results obtained from a set of more than 200 channel responses measured in 25 different premises are presented. Then, the suitability of various channel models proposed in the literature is evaluated by comparing their statistical distributions with the one of the measured channels.

I. INTRODUCTION

The main characteristics of broadband indoor power line channels response were firstly reported more than one decade ago [1]. Since then, several works have presented statistical analyses of their main parameters. An estimate of the cumulative distribution function of the delay spread was presented in [2], and lately in [3]. The statistical distribution of the number of peaks and notches, their width and height was studied in [4]. Recently, it has been pointed out that the average channel gain and the delay spread are correlated lognormal variables [3]. This conclusion has been drawn from the analysis of a large number of measurements taken in the US and poses a difference with other environments, like the wireless one, in which the correlation between the attenuation and the delay spread of the measured channels can be modeled as correlated lognormal random variables [3]. This conclusion has been drawn from the analysis of a large number of measurements taken in the US and poses a difference with other environments, like the wireless one, in which the correlation between both magnitudes is generally disregarded.

Simultaneously to the channel characterization efforts, numerous channel models have been proposed. Some of them are based on the physical nature of the problem. Indoor power line networks are modeled as a set of interconnected transmission lines terminated in open circuits or in loads of diverse nature [5–7]. Because of this, the modeling approach is usually referred to as bottom-up. One of the advantages of these models is that they can easily incorporate the time variation of the channel. However, they require the definition of realistic network topologies. It has been recently shown that a quite simple network topology with a limited number of loads is able to capture the essential features of these channels [8]. An alternative modeling approach, usually referred to as top-down or statistical, consists in representing the channel response as a set of delayed echoes with different amplitudes. The model parameters are selected to fit the observed responses. An example of this kind of models results from selecting the parameters of the proposal in [9] according to the random distributions given in [10]. Others are the one developed in the Opera (Open PLC European Research Alliance) project [11] and the two-tap model proposed in [3], [12].

In this paper, the statistical distribution of the average channel gain and the delay spread of indoor power line channels is explored. Presented results are based on more than 200 actual channels measured in 25 different premises in several Spanish cities in the frequency band up to 30 MHz. One of the objectives of the presented analysis is to assess if the lognormal behavior reported for the US channels in [3] also applies to these channels. This is an important issue for the development of universally valid statistical channel models. The second objective of this work is to use the statistics of the measured channels to assess the suitability of some of the most representative channel models.

II. STATISTICAL ANALYSIS

This section evaluates whether the average channel gain and the delay spread of the measured channels can be modeled as correlated lognormal random variables.

A. Average channel gain

Denoting by \(H_k \) the \(N \)-point sampled version of the channel frequency response at \(f_k = kf_s/(2N) \), where the sampling frequency is \(f_s = 60 \) MHz, the average channel gain can be computed as

\[
\overline{H}_{\text{dB}} = 10 \log_{10} \left(\frac{1}{N-k_1} \sum_{k=k_1}^{N-1} |H_k|^2 \right),
\]

where \(k_1 \) is the index corresponding to 2 MHz, as in [3].

Fig. 1 depicts the quantile-quantile (QQ) plot of the average channel gain vs a standard normal random variable (RV). As seen, the distribution is not symmetrical with respect to the median value, and
the probability of high average channel gain values (between -20 dB and -10 dB) is smaller than in a normally distributed variable. This agrees with the slightly platykurtic behavior (kurtosis=2.76) of the distribution.

Comparing these results with the ones in [12], it can be noticed that both exhibit approximately the same minimum values of H_{dB} (around -70 dB). On the other hand, the median of H_{dB} is lower in the channels measured in US (19.4 dB lower for the suburban channels and 14.4 dB for the urban ones) and so does the maximum value.

\begin{equation}
G(dB) = \frac{1}{N-k_1} \sum_{k=k_1}^{N-1} G_k = \frac{1}{N-k_1} \sum_{k=k_1}^{N-1} 20 \log_{10} |H_k|.
\end{equation}

B. Delay spread

Fig. 2 shows the QQ plot of the logarithm of the measured delay spread values vs a standard normal RV. It can be observed that the quantiles of the measured data fit the straight line quite well. This behavior is confirmed by the normality tests performed at a 5% significance level, shown in Table II.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Test Type & H & p-value \\
\hline
Lilliefors & R & 10^{-3} \\
Jarque-Bera & R & $18.15 \cdot 10^{-3}$ \\
Chi-Square & R & $102.21 \cdot 10^{-6}$ \\
Anderson-Darling & R & $533.02 \cdot 10^{-6}$ \\
Shapiro-Francia & R & $151.62 \cdot 10^{-6}$ \\
\hline
\end{tabular}
\caption{Results of the normality tests on H_{dB}}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Test Type & H & p-value \\
\hline
Lilliefors & A & 0.348 \\
Jarque-Bera & A & 0.362 \\
Chi-Square & A & 0.076 \\
Anderson-Darling & A & 0.053 \\
Shapiro-Francia & A & 0.127 \\
\hline
\end{tabular}
\caption{Results of the normality tests on the logarithm of the delay spread (μs)}
\end{table}

C. Relation between the delay spread and the average channel gain

As seen in the scattered plot of both magnitudes shown in Fig. 3, they are correlated. Channels with
high attenuation values exhibit high delay spread values. The reason is that the more branched the network, the higher number of reflections the signal will find in its way from the transmitter to the receiver, and the stronger time dispersion and attenuation it will suffer. It is also interesting to note that the delay spread exhibits significant dispersion from the regression line when the average attenuation is high. The reason is that channels with short main paths use to be not very branched. Hence, the signal that reaches the receiver through the direct path is much powerful than the echoes coming from the branches, leading to low attenuation and low delay spread values. On the other hand, when the direct path is very long the number of branches tend to be high and the attenuation increases because of both reasons. However, the delay spread will be low when the branches are short and high when the branches are long.

\[\sigma(\mu s) = -0.63 \times 10^{-7} G(dB)-22.3 \times 10^{-4} \]

\[H_{dB} = 273 \]

Fig. 3. Scatter plot of the delay spread vs the average channel gain of the measured channels.

III. CHANNEL MODELS

This section provides a brief description of the channel models to be compared afterwards. They have been selected either because they can be easily implemented or because a channel simulator is freely available. For the sake of brevity, the basics of the models will be provided by means of references, and only the values that have been given to their parameters (if required) will be described.

A. Simplified bottom-up model

This model is proposed in [8] and is a simplified version of the classical bottom-up modeling approach [5]. The simplification is twofold. Firstly, a simplified network topology with only seven line sections is employed. Secondly, loads are modeled using a reduced set of impedance functions. A channel generator according to this model is available for download [13]. It allows generating both time-invariant and periodically time-varying channels. The topology and the impedances can be manually fixed to give rise, for instance, to reference channels with best, medium and worst conditions. Alternatively, they can be generated at random to create representative channels in a statistical sense. The latter option, using the default values given in the generator for the time-invariant channels, has been employed in this work.

B. Top-down model

In this model, the channel response is represented using a set of echoes whose parameters are computed from statistics derived from measurements. It was firstly proposed in [9] for the outdoor power grid. However, it was lately used in [10] to generate indoor power line channels by selecting the values of its parameters according to certain statistical distributions. A channel generator according to this model is available for download in [14] and is the one employed in this work.

C. Opera model

This model was developed in the Opera research project [11]. The channel impulse response is modeled using a simple echo model without low-pass attenuation due to cable losses. Channels are categorized within four reference types according to the number of paths and time delay among them. In all cases the amplitudes of the echoes follow an exponentially decaying profile. The delays are randomly distributed using a given algorithm. The set of channels generated in this work according to this model is composed of an equal number of channels of each type.

D. Two-tap model

This model is proposed in [12]. It is based on the assumptions that the average channel gain, computed as in (1), and the delay spread are lognormally distributed and negatively correlated. The channel response is modeled as a two-path, equi-amplitude and \(\tau \)-spaced channel. The amplitudes are easily expressed in terms of the average channel gain, \(H dB \), which is generated using a Gaussian distribution whose parameters are derived from measurements. The spacing, \(\tau \), is fixed to twice the delay spread, which is computed according to the following procedure. If the kurtosis of the delay spread statistics is low or if the value of \(H dB \) that has been computed is low, the delay spread is obtained from the regression line derived from measurements. On the other hand, if the kurtosis is high and \(H dB \) is also high, the delay spread is extracted from a lognormal distribution whose parameters are obtained from measurements. In this work, the kurtosis of the measured delay spread values is 4.12, which has been interpreted as low, and the value of \(H dB \) has been
considered high if it is larger than the median of the measured channels (−29.58 dB).

IV. Models Comparison

In this section, the distribution of the average channel gain and the delay spread of the measured channels is compared to the one resulting from ensembles of 1000 channels generated according to each model.

A. Average channel gain

Fig. 4 depicts the QQ plots of the average channel gain, G(dB), of the generated channels vs the measured ones. The line that would result from the comparison of two identical distributions ($y = x$) is drawn in black as a reference. Its minimum and maximum values correspond to the maximum and minimum values of G(dB) in the measured channels. As seen, the simplified bottom-up model generates channels with quite realistic average channel gains values. The slope of its dashed line (approximately 0.5) reveals that the standard deviation of the generated channels is about one half of the measured ones, i.e., the dispersion of the generated channels is smaller than the measured ones. Moreover, the model generated according to a given category have nearly the same average channel gain. According to the results obtained in this work, a suitable value is −27.4 dB, which is the difference between the median of measured channels and in the set of channels generated using the current implementation of the model.

Concerning the top-down model, the distribution of G(dB) is also less dispersed than in actual channels. This can be noticed both in the slope of the dashed line of its QQ plot, which is about 1/3, and also in the difference between the maximum and the minimum value of G(dB), which is about 22 dB. Another flaw of the top-down model is that the values of G(dB) are not realistic at all. This drawback can be overcome just by adding a constant gain term to all the generated channels. According to the results obtained in this work, a suitable value is −27.4 dB, which is the difference between the median values of G(dB) in the set of measured channels and in the set of channels generated using the current implementation of the model.

Regarding the Opera model, the average channel gain of the resulting channels is strongly dependent on the reference category that has been employed for their generation. The staircase behavior denotes that the values of G(dB) are quantized, and that all the channels generated according to a given category have nearly the same average channel gain. Moreover, the model is not able to generate channels with average gains in the following ranges: $[-59, -49]$ dB, $[-46, -40]$ dB and $[-36, -28]$ dB.

As seen, the two-tap model generates the closest distribution to the measured one. However, the median of the values of G(dB) is about 6.4 dB higher than in actual channels. This overestimation of the median is a consequence of the aforementioned bias of \overline{H}_{dB} towards the maximum values of $|H_k|$. This model is able to generate channels with a wide range of average channel gains. Thus, the difference between the maximum and the minimum values of G(dB) is 68.87 dB. On the other hand, some of the generated channels have positive average channel gains, i.e., it produces channels that amplify the transmitted signal, instead of attenuating it.

![Fig. 4. QQ plots of the average channel gain, G(dB), of the generated channels vs the measured ones.](image)

In order to assess the similarity between the distributions of the generated and measured channels, the Kolmogorov-Smirnov test at a 5% significance level has been applied. Results are shown in Table III. As seen, the hypothesis (H) is accepted only for the channels generated by the simplified bottom-up model and by the two-tap model. Unsurprisingly, the resulting p-value for the Opera model is extremely small. On the other hand, the confidence level of the results concerning the simplified bottom-up and the two-tap models is quite high.

Table III

<table>
<thead>
<tr>
<th>Channel model</th>
<th>H</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified bottom-up</td>
<td>A</td>
<td>0.644</td>
</tr>
<tr>
<td>Top-Down</td>
<td>R</td>
<td>0.013</td>
</tr>
<tr>
<td>Opera</td>
<td>R</td>
<td>1.44 · 10⁻³</td>
</tr>
<tr>
<td>Two-tap</td>
<td>A</td>
<td>0.669</td>
</tr>
</tbody>
</table>

As seen, the two-tap model generates the closest distribution to the measured one. However, the median of the values of G(dB) is about 6.4 dB higher than in actual channels. This overestimation of the median is a consequence of the aforementioned bias of \overline{H}_{dB} towards the maximum values of $|H_k|$. This model is able to generate channels with a wide range of average channel gains. Thus, the difference between the maximum and the minimum values of G(dB) is 68.87 dB. On the other hand, some of the generated channels have positive average channel gains, i.e., it produces channels that amplify the transmitted signal, instead of attenuating it.
B. Delay spread

Fig. 5 depicts the QQ plots of the delay spread of the generated channels vs the measured ones. A zoomed area has been included to appreciate the details. In addition, the line \(y = x \) is drawn as a reference. Its minimum and maximum values correspond to the maximum and minimum delay spread values that have been measured. For the sake of clarity, the Opera model has not been included. The reason is that the delay spread of the generated channels is severely quantized. In fact, there are no channels with delay spread values in the ranges \([0.13, 0.21]\) \(\mu s\) and \([0.32, 0.45]\) \(\mu s\).

As seen, curves corresponding to the simplified bottom-up and the top-down models have an upside-down U shape. This indicates that the distributions of the generated channels are skewed to the left, i.e., the probability of generating channels with small delay spread values is higher than it should be (according to the distribution of the measured channels). Conversely, the probability of generating channels with high delay spread values is smaller than it should be. In fact, these models do not generate channels with delay spread values larger than 0.65 \(\mu s\). This effect does not occur in the channels generated by the two-tap model, in which the probability of channels with very high delay spread values is much higher than it should be. Actually, it may lead to channels with delay spread values as high as 1.43 \(\mu s\). Although not extractable from the figure, the median of the measured channels is 0.29 \(\mu s\), while the median values of the simplified bottom-up, the top-down and the two-tap are and 0.31, 0.32 and 0.27 \(\mu s\), respectively.

As seen, the hypothesis is accepted only for the channels generated with the simplified bottom-up model. Nevertheless, the resulting p-value indicates that the hypothesis is nearly on the limit of being rejected. In fact, when the test is applied to 100 ensembles of 1000 channels generated with this model, the acceptance ratio is 26%. Repeating the process for the remaining models, the acceptance ratio is 4% for the top-down model and 8% for the tow-tap one. It is always rejected for the Opera channels.

<table>
<thead>
<tr>
<th>Channel model</th>
<th>H</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified bottom-up</td>
<td>A</td>
<td>0.051</td>
</tr>
<tr>
<td>Top-Down</td>
<td>R</td>
<td>0.035</td>
</tr>
<tr>
<td>Opera</td>
<td>R</td>
<td>(264 \cdot 10^{-12})</td>
</tr>
<tr>
<td>Two-tap</td>
<td>R</td>
<td>(4.854 \cdot 10^{-3})</td>
</tr>
</tbody>
</table>

C. Relation between the delay spread and the average channel gain

Fig. 6 depicts the scatter plot of the delay spread vs the average channel gain of the generated and the measured channels. The correlation coefficient between both magnitudes is shown in the legend.

The severe quantization of the delay spread and the average channel gain in the Opera channels is clearly observable. Regarding the top-down model, in addition to the aforementioned offset of the average channel gain values, it can be noticed that the correlation is lower than in actual channels. It is worth noting the behavior of the two-tap model. The correlation is artificially high when \(G(\text{dB})\) is high. On the other hand, they are absolutely uncorrelated when \(G(\text{dB})\) is
low. Obviously, this is due to the decision adopted in
the channel generation procedure. However, it reflects
a limitation of the model: either both magnitudes are
perfectly correlated or absolutely uncorrelated.

V. CONCLUSION

This work has presented a statistical analysis of the
average channel gain and the delay spread of a set
of more than 200 actual channels in the frequency
band up to 30 MHz. Obtained results confirm that both
magnitudes are negatively correlated and that, while
the delay spread seems to be lognormally distributed,
it is not the case of the average channel gain.

Statistics derived from measurements have been
also used to compare the suitability of four channel
models: the simplified bottom-up model proposed in
[8], the top-down model proposed in [9, 10], the Opera
model [11] and the two-tap model proposed in [12].
Results indicate that statistics of the channels generated
with the simplified bottom-up model are quite close
to the measured ones both in terms of the average
channel gain and delay spread. The top-down model
generates channels with unrealistic gains. Although
this can be easily overcome by adding a constant gain
term proposed in this work, still the statistics of the
average gain and the delay spread and the correlation
between them are worse. The characteristics of the
channels generated with the Opera model are severely
quantized. The two-tap model generates channels with
the more realistic average channel gain distribution,
but it is unable to reflect the limited degree of correla-
tion observed in actual channels between the average
attenuation and the delay spread.

REFERENCES

[1] H. Philipps, “Performance measurements of
delay-line channels at high frequencies,” in
Proceedings of the International Symposium on
Power Line Communications and its Applications

Entrambasaguas, “Characterization of the cyclic
short-time variation of indoor power-line channel
response,” in Proceedings of the International
Symposium on Power Line Communications and its

power line channel,” in Proceedings of the IEEE
International Symposium on Power Line Com-
communications and its Applications (ISPLC), March

and G. Avril, “A broadband powerline channel
generator,” in Proceedings of the IEEE Interna-
tional Symposium on Power Line Communications and
its Applications (ISPLC), March 2007, pp. 505–
510.

Entrambasaguas, “Broadband modelling of indoor
power-line channels,” IEEE Transactions on

“In-building power lines as high-speed commu-
nication channels: channel characterization and
a test channel ensemble,” International Journal
of Communications, vol. 16, pp. 381–400, June
2003.

frequency-domain model for the indoor power
line transfer function,” IEEE Journal on Selected
1304–1316, July 2006.

Entrambasaguas, “A channel model proposal for
indoor power line communications,” accepted for
publication in the IEEE Communications Magazine,
2010.

model for the powerline channel,” IEEE Trans-
actions on Communications, vol. 50, no. 4, pp.
553–559, April 2002.

tion and receiver algorithms for multuser power
line communications,” EURASIP Journal on Ad-

“D4: Theoretical postulation of PLC channel

the power line channel,” in Proceedings of the
IEEE International Symposium on Power Line
Communications and its Applications (ISPLC), March

[13] Web page of the PLC working group of
the University of Málaga. [Online]. Available:
http://www.plc.uma.es

http://www.diegm.uniud.it/tonello/